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Measurements of rotating equilibrium bubble shapes in the low-gravity environment 
of a free-falling aircraft are presented. Emphasis is placed on bubbles which intersect 
the container boundaries. These data are compared with theoretical profiles derived 
from Laplace’s formula and are in good agreement with the measurements. The 
interface shape depends on the contact angle, the radius of intersection with the 
container, and the parameter F, which is a measure of the relative importance of 
centrifugal force to surface tension. For isolated bubbles F has a maximum value 
of+. A further increase in F causes the bubble to break contact with the axis of rotation. 
For large values of F the bubble becomes more cylindrical and the capillary rise occurs 
over a thinner layer in order that the small radius of curvature can generate a 
sufficient pressure drop to account for the increased hydrostatic contribution. 

1. Introduction 
Free-surface shapes of liquids play a key role in spacecraft-fuel-tank design and 

fluid-management systems. In the absence of gravity and temperature gradients 
along the surface which drive Maragoni convection, the equilibrium shape of the free 
surface is governed by a balance of capillary and centrifugal forces. Hydrostatic 
stability is maintained when the additional pressure from the capillary rise is 
compensated for by the pressure reduction owing to the curvature of the free surface. 
In a zero-gravity environment without rotation the surface is spherical. Whether the 
sphere encloses the liquid or the vapour depends on the wettability of the container 
by the liquid. In some spacecraft-fuel-tank applications, propellant slosh and 
distribution are controlled with the use of internal baffles which come into contact 
with the free surface. If the liquid is to be held using capillary forces, the baffle spacing 
must be small enough to overcome the fluid’s inertial forces during small accelerations 
brought about by thruster firings, crew motion, etc. The problem can be complicated 
by the rotation of the container. In any case, in order to manage the liquid the 
distribution of the fluid including its interface shape must be determined. 

Rosenthal (1962) computed the shapes of rotating bubbles in the absence of 
gravity. He found that for large rotation rates the aspect ratio of a free bubble is 
proportional to the square of the rotation rate. Chandrasekhar (1965) examined the 
stability of a rotating liquid drop and derived analytical formulas for the equilibrium 
shapes based on Laplace’s equation for the pressure drop across the interface. He went 
on to determine the frequency of the oscillations for various modes. Busse (1984) also 
examined the frequency of small oscillations for drops and bubbles. Using a spherical 
coordinate system he determined the equilibrium shape for a rotating liquid drop in 
terms of a Legendre-function expansion. He determined that, for drops, the frequency 
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of oscillation increases with rotation rate. The opposite result occurs for bubbles. Tieu, 
Joseph & Beavers (1984) obtained solutions for the motion and interface shape of 
a two-fluid system contained in an oscillating vertical cylinder. Using a domain 
perturbation approach, they obtained first- and second-order solutions in a standard- 
gravity environment. Experimental results were in qualitative agreement with their 
theoretical predictions. 

Princen, Zia, & Mason (1967) measured interface-shape characteristics of bubbles. 
However, in order to perform the experiments in a standard-gravity environment, 
the rotation rate had to be high enough for centrifugal forces to be much greater than 
gravitational forces. Consequently, the bubble interfaces were shaped like cylinders 
with round ends. Gans (1985) obtained numerical solutions for rotating bubbles 
enclosed in baffled containers and found that gravity had a destabilizing influence 
on their position. The solutions were validated experimentally in a standard-gravity 
environment. Experiments with non-axisymmetric shapes of a rotating drop im- 
mersed in a host medium were performed by Wang et al. (1982). They observed a 
family of multilobe shapes as a function of a rotational bond number. Experimental 
results have also been obtained by acoustic excitation of drops (Trinh, Zwern & 
Wang 1982). 

In  this paper measurements of rotating equilibrium free-surface shapes in the 
low-gravity environment of a free-falling aircraft are presented. This allows variation 
of the relative importance of surface tension with respect to centrifugal forces, 
producing a variety of shapes for comparison with theoretical profiles. Calculations 
of the shapes are made using a more general formulation of Chandrasekhar’s equation 
by including contact of the interface with the rotating container at a specified angle. 
It is easily shown that an isolated bubble or drop is a special case of the general result. 
Section 2 describes the experimental apparatus used to generate the rotating liquid 
surfaces as well as the low-gravity environment produced by the aircraft. The 
data-reduction technique is also discussed. The analytical derivation of the model is 
presented in $3  along with the regime of solutions. Finally, $4 contains a comparison 
of the two results and discussion. 

2. Experimental technique 

A schematic of the apparatus is shown in figure 1.  It consists of a Plexiglas cylinder 
20 cm in diameter, the depth of which can be set at 2, 4 or 6.3 cm. The cylinder 
is partially filled with ethanol, chosen because : its surface tension is relatively high 
and not extremely sensitive to low levels of contamination; its contact line with the 
container does not stick ; and its contact angle is close to zero. The cylinder is fastened 
to a turntable which rotates about the cylinder’s axis. The rotation speed can be 
varied from 0 to 108 rev./min. After the cylinder is filled with ethanol, a prescribed 
amount is removed to establish the bubble volume. Overhead and side-mounted video 
and still cameras record the shape of the fluid interface. 

The apparatus was bolted to the floor of a KC-135 aircraft, which is flown in a 
parabolic trajectory that provides 20-30 s of low gravity. Figure 2 shows a typical 
trajectory. After a descent from about 35000 f t  to 25000 f t  the aircraft attains an 
airspeed of 520 m.p.h. and then pitches sharply upward to begin the parabola. The 
local gravity environment begins to diminish to near zero and is measured by 
accelerometers. Although the gravity fluctuates around zero, typical departures are 
no more than 2 yo of terrestrial gravity. At  the top of the arc, near 35000 f t ,  the 
airspeed has reduced to 320 m.p.h. and the aircraft pitches down for the second half 
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FIQURE 1 .  A schematic of the experimental apparatus. 
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FIQURE 2. The parabolic trajectory flown by the KC-135 
aircraft for the low-gravity manoeuvre. 
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FIGURE 3. Typical shape for a bubble ( a )  dominated by centrifugal 
force and ( b )  dominated by surface tension. 
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FIGURE 4. Definition sketch for the cylindrical coordinate 
systems used for the analytical model. 

of the parabola. The manoeuvre is completed when the aircraft has descended to 
25000 f t  and another parabola begins. 

The fluid is set into rotation before the manoeuvre begins and the bubble shape 
is determined primarily by the centrifugal and gravitational forces, producing the 
classic paraboloidal surface. During the aircraft pullout at  the start of the manoeuvre, 
the fluid experiences a force of 2 g which tends to flatten the bubble at  the top of 
the cylinder. As the local gravity diminishes the vapour penetrates down the axis 
of the cylinder. The interface appears as a meniscus symmetric about the axis. 
Figure 3 shows typical bubbles for (a) rotation relatively strong compared to surface 
tension, and (b) weak rotation. For the latter case, the bubbles tend to meander 
somewhat and their shape is more sensitive to fluctuations of the low-gravity 
environment. This is consistent with Rosenthal's analytical result that rotation has 
a stabilizing effect. 

Analysis of the data is performed in four steps. First, a photographic frame of the 
bubble is digitized to provide coordinates for the liquid-vapour interface. Next, the 
shape is scaled to actual size using ratios of known dimensions. Then, the data is 
corrected for optical distortion using a ray-trace algorithm. Finally, the volume of 
the bubble is computed from the coordinates of the interface and compared with the 
measured value. 

3. Analytical model 
Chandrasekhar's (1965) analysis is expanded to develop an equation for the 

interface shape relevant to the present application. Figure 4 shows the cylindrical 
coordinate system used for the derivation. The bubble is assumed to be symmetric 
about the axis as well as its equator. The latter is valid for a zero-gravity environment 
and simplifies the derivation. The fluid interface intersects the top of the cylinder 
at a height L and at a radius ro and makes an angle 8. The bubble has a radius a.  
The pressure inside the bubble pi  is given by 

(1) i i i  2 2  Pi = p , + , p  w r 9 

where p: is a constant, pi is the density of the fluid inside the interface and w is the 
rotation rate of the fluid. The pressure outside the bubble po is given by 

po = p i  + $pow2r2, (2) 
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where pg is a constant, and po is the density of the fluid outside the interface. A t  the 
interface, the pressure discontinuity is given by Laplace's formula 

(3) pi-p" = TV*^ n, 7 

where T is the coefficient of surface tension and A, is the unit normal pointing outward 
from the surface. Let the position of the interface be given by z = f(r). Then the 
right-hand side of ( 3 )  is 

d -T- 
dr (1 

where # = df/dr. Substituting (1)  and (2) into (3) yields 

p,r+ipo2r2 = -T- d 
dr (1 + #2),t ' 

where p, ~ p i - p g  and p = pi-p". One integration of (4) results in 

ijp, r2 + & x ~ ~ 1 A  = - ~ Tr# +c, 
(1 + #",t 

where C is a constant. The value of C can be determined by the boundary condition 
that, at r = r,, 9 = -tan 8. The value of p ,  can be evaluated at  r = 0 where +- 00. 

With these substitutions and non-dimensionalizing r and z with a, the general 
equation for the interface becomes 

where 
l-?, sind+F(l--) P : - P 2  F(P*-e)  8,sinO -~ 

$= 1-9: P + P  8 '  

and ( A )  denotes non-dimensional radii, while F is a parameter defined as 
F = @"-pi) 02a3/T. It represents the ratio of centrifugal force to surface tension. 
F is negative for rotating drops @' > p") and positive for rotating bubbles (pi < P O ) .  

Note, if 8, = 0 and 8 = 0, ( 5 )  is equivalent to Chandrasekhar's equation for the shape 
of a rotating free drop. Also for the additional case of F = 0, (5 )  represents a sphere. 

Chandrasekhar presented solutions for drops in which 8, = 0, 8 = 0, and F is 
negative. He showed that the boundary conditions for the equations could be met 
only for F > -2.32911. Otherwise, the rotation was strong enough to centrifuge all 
the liquid away from the axis, forming a torus-like drop. 

This investigation examines rotating bubbles which may intersect the top and 
bottom boundaries. In this case F > 0 and Po may not be 0. It can be shown that 
there is a maximum value of F above which the bubble interface no longer contacts 
the axis. By taking the derivative of $ with respect to P and setting it equal to zero, 
we can see that @ is a maximum at 8 = [(1+ F)/3F$.  Setting this maximum equal 
to 1 and solving for F gives F = +. Considering the denominator of ( 5 ) ,  it is clear that, 
in general, solutions exist only for $2 < 1. This places a constraint on the relation 
between F and P o .  Figure 5 shows plots of the solution regimes for various contact 
angles. It can be seen that as the centrifugal force increases and F becomes more 
positive the radius of intersection with the boundary increases. Physically, the fluid 
is being centrifuged away from the axis and the fluid intersects the boundary at  a 
larger radius. As the rotation increases without limit the vapour core approaches in 
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FIGURE 5. Solution regime of (5) for various contact angles. 
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shape a cylinder whose radius is governed by the vapour volume and L. The radius 
of intersection is particularly sensitive to F until F exceeds about one. Thus when 
centrifugal forces dominate, the interface becomes more nearly parallel with the 
rotation axis except at the boundaries, where it must satisfy the contact-angle 
constraint. As the contact angle increases, the intersection radius naturally increases. 
To summarize, for an isolated bubble (P = 0 and 0 = 0), the shape of the bubble is 
determined solely by the parameter F. This parameter ranges from 0 for a spherical 
bubble to for a cylindrical bubble. From the definition of F it can be seen that, for 
a constant F, a further increase in the rotation speed reduces the bubble radius, which 
increases its length to conserve volume. Values of F greater than can be permitted 
only if the top of the bubble breaks contact with the axis. Then permissible values 
of F are determined by the contact radius of the interface with the boundary. 

4. Discussion of results 
Measurements of free-surface shapes were compared with the model calculations 

for various values of F, Po and L. For the calculations, the values of F and L as well 
as the vapour volumes were known from the experiment. The value of F was entered 
into (5). The value of r,, could not be easily determined from the overhead or side 
cameras, particularly since 8 is near zero. Instead, a guess of 4o was made and the 
equation was numerically integrated. If the computed value of z at 4 = 4, was not 
equal to the known cylinder half-depth, a new guess for Po was made. After the 
integration was complete, a check of the measured bubble volume with the computed 
volume was made. 

Figure ~ ( u - c )  shows a comparison of the measured interface profiles with the 
calculated ones for small, moderate, and large values of F respectively. The cylinder 
depth is 2 cm. The profile in figure 6(u )  is a low-rotation case which is dominated 
by capillary forces. These data were somewhat difficult to obtain because the 
equilibrium was very sensitive to the environment's departure from zero gravity. 
Although the fluid quickly transitioned to a quasi-steady state as the environmental 
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FIGURE 6. A comparison of the measured and computed profiles in a 2 cm deep cylinder for 
(a) F = 0.16, ( b )  1 . 1 ,  and (c) 5.6. Q , measurement; -, equation (5). 

gravity diminished from 2 g to near zero, establishment of a true equilibrium was 
transitory. Fluctuations around zero gravity created vertical displacements of the 
bubble which sometimes broke contact with the top or bottom boundaries. Clearly 
for this case the interface surface is near spherical and is in good agreement with the 
calculations. 
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FIQURE 7. A comparison of the measured and computed profiles in a 4 cm deep cylinder for 
(a) F = 0.71, ( b )  0.99, and (c) 3.2. 0 ,  measurement; - , equation (5). 

Figure 6 (b )  shows data for a moderate value of F. Here the capillary and centrifugal 
forces are about equal and the surface has become more prolate. It can be seen that 
the value of 8, has increased, consistently with figure 5. Similarly, figure 6(c)  shows 
the data and calculated profiles for a large value of F. The surface here is dominated 
by centrifugal force and the interface is more parallel with the rotation axis, except 
at the boundary, where it is constrained to intersect at a prescribed angle. For this 
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FIQURE 8. Computed interface shapes for isolated bubbles for various values of F. 
FIGURE 9. A comparison of the measured and computed profiles in a 6.3 cm deep cylinder for 
P = 6.4. 4, measurement: -, equation (5). 

value of F the interface was quite stable because the centrifugal force was not only 
greater than the capillary force, but was also much greater than the fluctuating 
residual environmental gravity. 

Figure 7 (u-c) shows interface shapes for a cylinder depth of 4 cm. For a given 
bubble volume larger rotation rates are needed in order for the bubble to contact the 
top and bottom boundaries as required by the theory. Otherwise, the bubble with 
a smaller diameter than the cylinder gap meanders along the axis or attaches to the 
top or bottom boundary. Figure 7 (a)  represents one of the slower relative rotation 
rates that could stabilize the bubble. Equation ( 5 )  can be used to determine the largest 
gap required to stabilize a bubble at a particular value of F. The tallest bubble that 
can be attained for a given F is found by using the smallest Po that the solution will 
permit. Figure 8 shows computations of the interface shapes of isolated bubbles 
( P o  = 0) for various values of F. It is apparent that increasing the rotation increases 
the aspect ratio of the bubble. This occurs as F approaches its maximum value of 
?j for an isolated bubble. A further increase in F after that point causes the bubble 
to break contact with the axis of rotation and 8, becomes greater than 0. Once Po 
increases then the solution permits larger values of F consistent with figure 5. 
Figure 7 (b) shows a profile in which centrifugal and capillary forces are about equal. 
The value of F is about the same as for the profile in figure 6 ( b ) .  However, Po had 
to be appropriately decreased for the computation in order for the interface height 
to match the deeper container, Figure 7(c) shows an interface profile for F = 3. 
Because capillary forces are weak, the interface is almost cylindrical except for its 
contact point with the top and bottom boundaries. The capillary rise occurs over a 
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thinner layer in order that the small radius of curvature can generate a sufficient 
pressure drop to account for the increased hydrostatic contribution. 

Finally, figure 9 shows an interface profile for a rotating cylinder of 6.3 cm depth. 
For similar bubble-volume to total-volume ratios, higher values of F are required to 
produce an interface with top and bottom boundary contact. This simply means that 
they require greater rotational speeds, since for these near-cylindrical bubbles the 
bubble radius changes little with w .  An increase in o merely increases F, producing 
a more nearly cylindrical bubble. The figure shows the resulting thinner layer over 
which the surface tension acts to meet the contact-angle requirement. This layer is 
thinner for the reason stated above. 

In summary, ( 5 )  derived from Laplace’s equation relating the pressure drop across 
an interface to the radii of curvature has been applied to a rotating bubble which 
contacts the container boundary. Solutions to the equation are dependent upon 
several parameters, namely F the ratio of centrifugal to capillary forces, f?o the contact 
radius of the interface to the boundary, and also 0 the contact angle. For the cases 
presented here the contact angle was near zero, which permits a greater range of 
solutions. For isolated bubbles F has a maximum value of t .  A further increase in 
F causes the bubble to break contact with the axis of rotation. For larger values of 
F, the bubble becomes more cylindrical and the capillary rise occurs over a thinner 
layer. Measurements of the interface shapes performed in the low-gravity environment 
of an aircraft following a parabolic trajectory showed good agreement in the cases 
examined. 
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